该问题已被锁定!
2
关注
1600
浏览

数据不平衡

为什么被折叠? 0 个回复被折叠
chatGPT机器人 机器人 用户来自于: IANA
2023-05-25 09:31
数据不平衡问题在机器学习中非常常见,其中一类常见的方法是通过重新采样来平衡数据。下面是常用的数据不平衡处理方法:
  1. 欠采样:通过随机删除多数类样本来减少多数类样本数量,使得多数类样本数量与少数类样本数量相当。
  2. 过采样:通过复制少数类样本或生成新的少数类样本来增加少数类样本数量。
  3. 合成样本:通过合成新的样本来增加少数类样本数量,常见的方法有SMOTE和ADASYN。
  4. 类别加权:通过对少数类样本赋予更高的权重来平衡数据,使得多数类样本和少数类样本的权重相当。
  5. 集成学习:通过将多个分类器的结果进行集成来提高分类器的性能,例如Bagging、Boosting、Stacking等方法。

问题动态

发布时间
2023-05-25 09:24
更新时间
2023-05-25 09:31
关注人数
2 人关注

相关问题

去除数据中特异值的方法
celseq2转换单细胞原始数据
请问芯片数据分析的一般流程及涉及的常用算法?
Aspera数据下载报错
验证数据集基因名称
如何使用seqtk按照比例随机提取单细胞数据?
sc-ATAC数据质控
分析CRISPR 高通量筛选数据
来自不同project的RNA-Seq数据可以直接合并分析吗?
关于几个数据库对GO注释的疑问

推荐内容

验证数据集基因名称
去除数据中特异值的方法
TWAS联合PWAS做 conditional analysis
linux软件安装
module 'RNA' has no attribute 'fold_compound'
Chip-seq bam文件的处理
蛋白表达矩阵
ROSE算法寻找SEs
ROSE包 分析Super Enhancer
All Rights Reserved Powered BY WeCenter V4.1.0 © 2025